Stem cells as a promising therapeutic direction for the treatment of serious diseases

  • T.A. Sprynsian Civic Union “Communicable Diseases Intensive Care Association” (INCURE), Kyiv, Ukraine


ABSTRACT. Stem cells have attracted scientific, clinical and public interest because they can regenerate and develop in certain types of cells, depending on their source of origin and biological plasticity. Several strategies for the use of cell therapy are currently being explored. A total of 8357 clinical trials of various stages using stem cells have been registered. The possibility of using multipotent mesenchymal stromal cells in patients with COVID-19-induced complications is being actively investigated. However, among the stem cell products, the U.S. Food and Drug Administration (FDA) has so far approved only those that are produced from umbilical cord blood. In the USA and European countries, there are private clinics that provide services for the collection and cultivation of stem cells, mainly autologous. Such medical centers can become the point of concentration of personalized medicine, focused on the needs of a particular patient and his/her possibilities of receiving targeted therapy for severe, difficult-to-treat conditions using modern methods in cellular technologies. The article presents an analysis of existing strategies for the therapeutic use of stem cells and the most promising directions for their further study.

Keywords: stem cells, embryonic, autologous, allogeneic, SARS-CoV-2, coronavirus disease.


Brittberg M., Lindahl A., Nilsson A., Ohlsson C., Isaksson O., Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 1994 Oct 6; 331 (14): 889-95.

Minas T. Chondrocyte implantation in the repair of chondral lesions of the knee: economics and quality of life. Am. J. Orthop. 1998; 27: 739-744.

Brittberg M. Autologous chondrocyte transplantation. Clin. Orthop. 1999: S147-55.

Minas T., Peterson L. Advanced techniques in autologous chondrocyte transplantation. Clin. Sports Med. 1999; 18: 13-44.

Robinson D., Ash H., Aviezer D., Agar G., Halperin N., Nevo Z. Autologous chondrocyte transplantation for reconstruction of isolated joint defects: the Assaf Harofeh experience. Isr. Med. Assoc. J. 2000; 2: 290-295.

Brittberg M., Tallheden T., Sjogren-Jansson B., Lindahl A., Peterson L. Autologous chondrocytes used for articular cartilage repair: an update. Clin. Orthop. 2001: S337-48.

King P., Bryant T., Minas T. Autologous chondrocyte implantation for chondral defects of the knee: indications and technique. J. Knee Surg. 2002; 15: 177-184.

Peterson L., Brittberg M., Kiviranta I., Akerlund E., Lindahl A. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am. J. Sports Med. 2002; 30: 2-12.

Navsaria H.A., Myers S.R., Leigh I.M., McKay I.A. Culturing skin in vitro for wound therapy. Trends Biotechnol. 1995; 13: 91-100.

Kuroyanagi Y., Kenmochi M., Ishihara S., Takeda A., Shiraishi A., Ootake N., Uchinuma E., Torikai K., Shioya N. A cultured skin substitute composed of fibroblasts and keratinocytes with a collagen matrix: preliminary results of clinical trials. Ann. Plast. Surg. 1993; 31: 340-9; discussion 349-51.

Boyce S.T., Greenhalgh D.G., Kagan R.J., Housinger T., Sorrell J.M., Childress C.P., Rieman M., Warden G.D. Skin anatomy and antigen expression after burn wound closure with composite grafts of cultured skin cells and biopolymers. Plast. Reconstr. Surg. 1993; 91: 632-641.

Carsin H., Ainaud P., Le Bever H., Rives J., Lakhel A., Stephanazzi J., Lambert F., Perrot J. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns. 2000; 26: 379-387.

Penn M.S., Francis G.S., Ellis S.G., Young J.B., McCarthy P.M., Topol E.J. Autologous cell transplantation for the treatment of damaged myocardium. Prog. Cardiovasc. Dis. 2002; 45: 21-32.

Yoo K.J., Li R.K., Weisel R.D., Mickle D.A., Li G., Yau T.M. Autologous smooth muscle cell transplantation improved heart function in dilated cardiomyopathy. Ann. Thorac. Surg. 2000; 70: 859-865.

Dorfman J., Duong M., Zibaitis A., Pelletier M.P., Shum-Tim D., Li C., Chiu R.C. Myocardial tissue engineering with autologous myoblast implantation. J. Thorac. Cardiovasc. Surg. 1998; 116: 744-751.

Tran N., Li Y., Bertrand S., Bangratz S., Carteaux J.P., Stoltz J.F., Villemot J.P. Autologous cell transplantation and cardiac tissue engineering: potential applications in heart failure. Biorheology. 2003; 40: 411-415.

Gulbins H., Meiser B., Reichenspurner H., Reichart B. Cell transplantation – a potential therapy for cardiac repair in the future? Heart Surg. Forum. 2002; 5: E28-34.

Peyman G.A., Blinder K.J., Paris C.L., Alturki W., Nelson N.C. Jr., Desai U.A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surg. 1991; 22: 102-108.

Binder S., Stolba U., Krebs I., Kellner L., Jahn C., Feichtinger H., Povelka M., Frohner U., Kruger A., Hilgers R., Krugluger W. Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study. Am. J. Ophthalmol. 2002; 133: 215-225. doi: 10.1016/S0002-9394(01)01373-3.

Semkova I., Kreppel F., Welsandt G., Luther T., Kozlowski J., Janicki H., Kochanek S., Schraermeyer U. Autologous transplantation of genetically modified iris pigment epithelial cells: a promising concept for the treatment of age-related macular degeneration and other disorders of the eye. Proc. Natl. Acad. Sci. USA. 2002; 99: 13090-13095. doi: 10.1073/pnas.202486199.

Baron-Van Evercooren A., Avellana-Adalid V., Lachapelle F., Liblau R. Schwann cell transplantation and myelin repair of the CNS. Mult. Scler. 1997; 3: 157-161.

Blakemore W.F., Crang A.J. The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system. J. Neurol. Sci. 1985; 70: 207-223. doi: 10.1016/0022-510X(85)90088-7.

Stangel M., Hartung H. Remyelinating strategies for the treatment of multiple sclerosis. Prog. Neurobiol. 2002; 68: 361-376. doi: 10.1016/S0301-0082(02)00105-3.

Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284: 143-147.

Wakitani S., Goto T., Pineda S.J., Young R.G., Mansour J.M., Caplan A.I., Goldberg V.M. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. Am. 1994; 76: 579-592.

Im G.I., Kim D.Y., Shin J.H., Hyun C.W., Cho W.H. Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow. J. Bone Joint Surg. Br. 2001; 83: 289-294. doi: 10.1302/0301-620X.83B2.10495.

Wakitani S., Imoto K., Yamamoto T., Saito M., Murata N., Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002; 10: 199-206.

Orlic D., Kajstura J., Chimenti S., Bodine D., Leri A., Anversa P. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann. NY Acad. Sci. 2001; 938: 221-9; discussion 229-30.

Orlic D., Kajstura J., Chimenti S., Bodine D., Leri A., Anversa P. Bone marrow stem cells regenerate infarcted myocardium. Pediatr. Transplant. 2003; 7 Suppl. 3: 86-88. doi: 10.1034/j.1399-3046.7.s3.13.x.

Terai S., Yamamoto N., Omori K., Sakaida I., Okita K. A new cell therapy using bone marrow cells to repair damaged liver. J. Gastroenterol. 2002; 37 Suppl. 14: 162-163.

Akiyama Y., Radtke C., Honmou O., Kocsis J. Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia. 2002; 39: 229-236.

Ianus A., Holz G.G., Theise N.D., Hussain M.A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest. 2003; 111: 843-850.

Peretti G.M., Caruso E.M., Randolph M.A., Zaleske D.J. Meniscal repair using engineered tissue. J. Orthop. Res. 2001; 19: 278-285. doi: 10.1016/S0736-0266(00)90010-X.

Eaglstein W., Falanga V. Tissue engineering and the development of Apligraf a human skin equivalent. Adv. Wound Care. 1998; 11: 1-8.

Chu C.R., Coutts R.D., Yoshioka M., Harwood F.L., Monosov A.Z., Amiel D. Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J. Biomed. Mater. Res. 1995; 29: 1147-1154.

Parenteau N.L., Bilbo P., Nolte C.J., Mason V.S., Rosenberg M. The organotypic culture of human skin keratinocytes and fibroblasts to achieve form and function. Cytotechnology. 1992; 9: 163-171.

Subramanian T., Marchionini D., Potter E.M., Cornfeldt M.L. Striatal xenotransplantation of human retinal pigment epithelial cells attached to microcarriers in hemiparkinsonian rats ameliorates behavioral deficits without provoking a host immune response. Cell Transplant. 2002; 11: 207-214.

Watts R.L., Raiser C.D., Stover N.P., Cornfeldt M.L., Schweikert M.L., Allen R.C., Somerville N.J., Subramanian T., Bakay R.A.E. American Academy of Neurology, 55th Annual Meeting, March 29 – April 5th, 2003. Honolulu, Hawaii; 2003. Stereotaxic Intrastriatal Implantation of Retinal Pigment Epithelial Cells Attached to Microcarriers in Six Advanced Parkinson Disease (PD) Patients: Two Year Follow-Up.

Kondziolka D., Wechsler L., Goldstein S., Meltzer C., Thulborn K.R., Gebel J., Jannetta P., DeCesare S., Elder E.M., McGrogan M., Reitman M.A., Bynum L. Transplantation of cultured human neuronal cells for patients with stroke. Neurology. 2000; 55: 565-569.

Nelson P.T., Kondziolka D., Wechsler L., Goldstein S., Gebel J., DeCesare S., Elder E.M., Zhang P.J., Jacobs A., McGrogan M., Lee V.M., Trojanowski J.Q. Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am. J. Pathol. 2002; 160: 1201-1206.

Watanabe T., Kawano Y., Watanabe A., Takaue Y. Autologous and allogeneic transplantation with peripheral blood CD34+ cells: a pediatric experience. Haematologica. 1999; 84: 167-176.

Baron F., Baudoux E., Fillet G., Beguin Y. Retrospective comparison of CD34-selected allogeneic peripheral blood stem cell transplantation followed by CD8-depleted donor lymphocyte infusions with unmanipulated bone marrow transplantation. Hematology. 2002; 7: 137-143.

Uchida N., Buck D.W., He D., Reitsma M.J., Masek M., Phan T.V., Tsukamoto A.S., Gage F.H., Weissman I.L. Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA. 2000; 97: 14720-14725.

Svendsen C.N., ter Borg M.G., Armstrong R.J., Rosser A.E., Chandran S., Ostenfeld T., Caldwell M.A. A new method for the rapid and long term growth of human neural precursor cells. J. Neurosci. Methods. 1998; 85: 141-152.

Svendsen C.N., Clarke D.J., Rosser A.E., Dunnett S.B. Survival and differentiation of rat and human epidermal growth factor-responsive precursor cells following grafting into the lesioned adult central nervous system. Exp. Neurol. 1996; 137: 376-388.

Svendsen C.N., Caldwell M.A., Ostenfeld T. Human neural stem cells: isolation, expansion and transplantation. Brain Pathol. 1999; 9: 499-513.

Nunes M.C., Roy N.S., Keyoung H.M., Goodman R.R., McKhann G. 2nd, Jiang L., Kang J., Nedergaard M., Goldman S.A. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med. 2003; 9: 439-447.

Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020; 8 (4): 420-2.

Hughes K.T., Beasley M.B. Pulmonary manifestations of acute lung injury: more than just diffuse alveolar damage. Arch. Pathol. Lab. Med. 2017; 141 (7): 916-22.

Horie S., Gonzalez H.E., Laffey J.G., Masterson C.H. Cell therapy in acute respiratory distress syndrome. J. Thorac. Dis. 2018; 10 (9): 5607-20.

Shi Y., Su J., Roberts A.I., Shou P., Rabson A.B., Ren G. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 2012; 33 (3): 136-43.

Harrell C.R., Sadikot R., Pascual J., Fellabaum C., Jankovic M.G., Jovicic N. et al. Mesenchymal stem cell-based therapy of inflammatory lung diseases: current understanding and future perspectives. Stem Cells International. 2019; 2019: 4236973.

Krasnodembskaya A., Song Y., Fang X., Gupta N., Serikov V., Lee J.W. et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010; 28 (12): 2229-38.

Khatri M., Richardson L., Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res. Therapy. 2018; 9 (1): 17.

Hosseini M., Yousefifard M., Aziznejad H., Nasirinezhad F. The effect of bone marrow-derived mesenchymal stem cell transplantation on allodynia and hyperalgesia in neuropathic animals: a systematic review with meta-analysis. Biol. Blood Marrow Transplant. 2015; 21 (9): 1537-44.

Golchin A., Seyedjafari E., Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: present or future. Stem Cell Reviews and Reports. 2020.

Cancio M., Ciccocioppo R., Rocco P.R.M., Levine B.L., Bronte V., Bollard C.M., Hanley P.J. Emerging trends in COVID-19 treatment: learning from inflammatory conditions associated with cellular therapies. Cytotherapy. 2020.

Mazini L., Rochette L., Amine M., Malka G. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int. J. Mol. Sci. 2019; 20 (10): 2523.

Dufrane D. Impact of age on human adipose stem cells for bone tissue engineering. Cell Transplant. 2017; 26 (9): 1496-504.

Buschmann J., Gao S., Harter L., Hemmi S., Welti M., Werner C. et al. Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions? Cytotherapy. 2013; 15 (9): 1098-105.

Wagner W., Wein F., Seckinger A., Frankhauser M., Wirkner U., Krause U. et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 2005; 33 (11): 1402-16.

Barlow S., Brooke G., Chatterjee K., Price G., Pelekanos R., Rossetti T. et al. Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev. 2008; 17 (6): 1095-107.

Lee R.H., Pulin A.A., Seo M.J., Kota D.J., Ylostalo J., Larson B.L. et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009; 5 (1): 54-63.

Fischer U.M., Harting M.T., Jimenez F., Monzon-Posadas W.O., Xue H., Savitz S.I. et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009; 18 (5): 683-92.

ERS Monograph: Lung Stem Cells (data before print).

How to Cite
Sprynsian, T. (2021). Stem cells as a promising therapeutic direction for the treatment of serious diseases. Infusion & Chemotherapy, (2), 5-10.

Author Biography

T.A. Sprynsian, Civic Union “Communicable Diseases Intensive Care Association” (INCURE), Kyiv, Ukraine

Sprynsian Tatiana
Vice director / TB of the Civic Union “Communicable Diseases Intensive Care Association” (INCURE).
10, M. Amosova st., Kyiv, 03038, Ukraine.