The first data on international multicenter clinical study RheoSTAT-CP0698 on the efficacy and safety of Rheosorbilact® infusion in therapy of pneumonia

  • Y.I. Feshchenko National Institute of Phthisiology and Pulmonology named after F.G. Yanovsky of the NAMS of Ukraine, Kyiv, Ukraine
  • S. Beridze JSC “EVEX Medical Corporation” / Batumi State University named after Sh. Rustaveli, Georgia
  • Dinh Thi Hoa 198 Hospital, Hanoi, Vietnam
  • V.Y. Molodtsov City Hospital № 1, Mykolaiv, Ukraine
  • M.I. Gumeniuk National Institute of Phthisiology and Pulmonology named after F.G. Yanovsky of the NAMS of Ukraine, Kyiv, Ukraine
  • N. Gogoreliani JSC “EVEX Medical Corporation” / Kutaisi Referral Hospital, Georgia
  • H.I. Sattarov Republican Scientific Center of Emergency Medical Aid, Tashkent, Uzbekistan
  • N. Emukhvari “Israel Georgian Medical Research Clinic HELSI Core LLC” LTD, Tbilisi, Georgia
  • G. Lupu Municipal Clinical Hospital “Sfinta Treime”, Chisinau, Moldova
  • Y.M. Mostovoi Vinnytsia National Medical University named after M. I. Pyrogov / City Clinical Hospital № 1, Vinnytsia, Ukraine
  • L.M. Kuryk National Institute of Phthisiology and Pulmonology named after F.G. Yanovsky of the NAMS of Ukraine, Kyiv, Ukraine
  • Nguyen Thi Thu Anh Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam


ABSTRACT. Adequate and effective treatment of severe pneumonia is especially relevant in present situation. The most problematic issue is infusion therapy. The current evidence and guidelines recommend balanced crystalloid infusion for patients with severe pneumonia and sepsis. The composition of Rheosorbilact® provides significant benefits in patients with severe infections, including respiratory infections. According to the results of the randomized open blinded end-point RheoSTAT-CP0698 study, administration of Rheosorbilact® to patients with pneumonia (intravenous infusion at a dose of 200-400 ml/day for 3 days) effectively improves the clinical condition, reduces the manifestations of (multi-) organ failure and endogenous intoxication. Small-volume infusion therapy promotes rapid normalization of circulating blood volume, stabilization of hemodynamics, acid-base, electrolyte and gas composition of the blood, significantly improves saturation and reduces tachypnea. The positive effect of therapy on renal function and inflammation has also been established. This therapy had a favorable safety profile (e. g., it did not lead to fluid overload, pulmonary edema, pleural effusion or other serious side effects, and was not associated with a clinically significant increase in endogenous serum lactate level). The RheoSTAT-CP0698 study substantiates the feasibility of using Rheosorbilact® in the complex treatment of pneumonia.

Keywords: pneumonia, infusion therapy, efficacy, safety, Rheosorbilact.


GBD 2016 Lower Respiratory Infections Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018 Nov; 18 (11): 1191-1210. doi: 10.1016/S1473-3099(18)30310-4.

Chalmers J., Campling J., Ellsbury G., Hawkey P., Madhava H., Slack M. Community-acquired pneumonia in the United Kingdom: a call to action. Pneumonia (Nathan). 2017 Oct 5; 9: 15.

Phua J., Dean N.C., Guo Q., Kuan W.S., Lim H.F., Lim T.K. Severe communityacquired pneumonia: timely management measures in the first 24 hours. Crit. Care. 2016; 20 (1): 237. Published 2016 Aug 28. doi: 10.1186/s13054-016-1414-2.

Angus D.C., Linde-Zwirble W.T., Lidicker J., Clermont G., Carcillo J., Pinsky M.R. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 2001; 29: 1303-1310. doi: 10.1097/00003246-200107000-00002.

Montull B., Menendez R., Torres A., Reyes S., Mendez R., Zalacain R. et al. Predictors of severe sepsis among patients hospitalized for communityacquired pneumonia. PLoS One. 2016; 11: e0145929. doi: 10.1371/journal.pone.0145929.

Woodcock T.E., Woodcock T.M. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br. J. Anaesth. 2012; 108 (3): 384-394.

Chang R., Holcomb J. Choice of fluid therapy in the initial management of sepsis, severe sepsis, and septic shock. Shock. 2016 Jul; 46 (1): 17-26. doi: 10.1097/SHK.0000000000000577.

Best M.W., Jabaley C.S. Fluid management in septic shock: a review of physiology, goal-directed therapy, fluid dose, and selection. Curr. Anesthesiol. Rep. 2019; 9: 151-157.

Liang Y., Li X., Zhang X., Li Z., Wang L., Sun Y., Liu Z., Ma X. Elevated levels of plasma TNF-α are associated with microvascular endothelial dysfunction in patients with sepsis through activating the NF-κB and p38 mitogenactivated protein kinase in endothelial cells. Shock. 2014; 41 (4): 275-281.

Hippensteel J.A., Uchimido R., Tyler P.D., Burke R.C., Han X., Zhang F. et al. Intravenous fluid resuscitation is associated with septic endothelial glycocalyx degradation. Crit. Care. 2019; 23 (259).

Nieuwdorp M., Mooij H.L., Kroon J., Atasever B., Spaan J.A., Ince C., Holleman F., Diamant M., Heine R.J., Hoekstra J.B. et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes. 2006; 55 (4): 1127-1132.

Malbrain M.L.N.G., Van Regenmortel N., Saugel B., De Tavernier B., Van Gaal P.J., Joannes-Boyau O., Teboul J.L., Rice T.W., Mythen M., Monnet X. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann. Intensive Care. 2018 May 22; 8 (1): 66. doi: 10.1186/s13613-018-0402-x.

Marik P., Bellomo R. A rational approach to fluid therapy in sepsis. Br. J. Anaesth. 2016; 116 (3): 339.

Adapted evidence-based clinical guideline. Nosocomial pneumonia in adults: etiology, pathogenesis, classification, diagnosis, antimicrobial therapy and prevention. Compilers: Feshchenko Y.I., Belosludtseva K.O., Golubovska O.A. et al. – Kyiv: National Academy of Medical Sciences of Ukraine, 2019. – 94 p.

Rivers E., Nguyen B., Havstad S., Ressler J., Muzzin A., Knoblich B. et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 2001; 345: 1368-1377. doi: 10.1056/NEJMoa010307.

Singer M., Deutschman C., Seymour C., Shankar-Hari M., Annane D., Bauer M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315: 801-10.

Koonrangsesomboon W., Khwannimit B. Impact of positive fluid balance on mortality and length of stay in septic shock patients. Indian J. Crit. Care Med. 2015 Dec; 19 (12): 708-13.

Cordemans C., De Laet I., Van Regenmortel N., Schoonheydt K., Dits H., Huber W. et al. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann. Intensive Care. 2012; 2: S1.

National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Wiedemann H.P., Wheeler A.P., Bernard G.R. et al. Comparison of two fluid-management strategies in acute lung injury. N. Engl. J. Med. 2006; 354: 2564-75.

Malbrain M.L., Marik P.E., Witters I., Cordemans C., Kirkpatrick A.W., Roberts D.J. et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol. Intensive Ther. 2014; 46: 361-80.

Heung M., Wolfgram D.F., Kommareddi M., Hu Y., Song P.X., Ojo A.O. Fluid overload at initiation of renal replacement therapy is associated with lack of renal recovery in patients with acute kidney injury. Nephrol. Dial. Transplant. 2012; 27: 956-61.

Bouchard J., Soroko S.B., Chertow G.M., Himmelfarb J., Ikizler T.A., Paganini E.P. et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009; 76: 422-7.

Stein A., de Souza L.V., Belettini C.R., Menegazzo W.R., Viegas J.R., Costa Pereira E.M. et al. Fluid overload and changes in serum creatinine after cardiac surgery: predictors of mortality and longer intensive care stay. A prospective cohort study. Crit. Care. 2012; 16: R99.

Efficacy and Safety of Rheosorbilact® Solution for Infusion, in a Complex Therapy of Pneumonia. NCT03824457. Cochrane Central Register of Controlled Trials (CENTRAL). 2019. Issue 3. Available at:

Hahn R., Lyons G. The half-life of infusion fluids: an educational review. Eur. J. Anaesthesiol. 2016; 33 (7): 475-82.

Caironi P., Tognoni G., Masson S., Fumagalli R., Pesenti A., Romero M. et al. Albumin replacement in patients with severe sepsis or septic shock. N. Engl. J. Med. 2014; 370 (15): 1412-21.

Finfer S., Bellomo R., Boyce N., French J., Myburgh J., Norton R. et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N. Engl. J. Med. 2004; 350 (22): 2247-56.

SAFE Study Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group; Australian Red Cross Blood Service; George Institute for International Health, Myburgh J., Cooper D., Finfer S., Bellomo R., Norton R., Bishop N., Kai Lo S., Vallance S. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N. Engl. J. Med. 2007 Aug 30; 357 (9): 874-84. doi: 10.1056/NEJMoa067514.

Myburgh J., Finfer S., Bellomo R., Billot L., Cass A., Gattas D. et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N. Engl. J. Med. 2012; 367 (20): 1901-11.

Perner A., Haase N., Guttormsen A., Tenhunen J., Klemenzson G., Aneman A. et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N. Engl. J. Med. 2012; 367 (2): 124-34.

Rhodes A., Evans L.E., Alhazzani W., Levy M.M., Antonelli M., Ferrer R. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit. Care Med. 2017; 45 (3): 486-552.

MacDonald N., Pearse R. Are we close to the ideal intravenous fluid? Br. J. Anaesth. 2017; 119 (suppl. 1): i63-71.

Magee C.A., Bastin M.L.T., Laine M.E., Bissell B.D., Howington G.T., Moran P.R. et al. Insidious harm of medication diluents as a contributor to cumulative volume and hyperchloremia: a prospective, open-label, sequential period pilot study. Crit. Care Med. 2018; 46 (8): 1217-23.

Self W.H., Semler M.W., Wanderer J.P., Wang L., Byrne D.W., Collins S.P. et al. Balanced crystalloids versus saline in noncritically ill adults. N. Engl. J. Med. 2018; 378 (9): 819-28.

Semler M.W., Self W.H., Wanderer J.P., Ehrenfeld J.M., Wang L., Byrne D.W. et al. Balanced crystalloids versus saline in critically ill adults. N. Engl. J. Med. 2018; 378 (9): 829-39.

Dalton C. Why did sterile salt water become the IV fluid of choice? NPR. 2018. Available at: Accessed: 2/4/2018.

Kondratsky B., Novak V. Experience of application in clinical practice of a complex infusion drug Rheosorbilact. The Art of Healing. 2006; 1: 34-36.

Khamidov D.B., Kosimov Z.K., Khomidov D.D., Kiyamov S.E. Rheosorbilact complex polyfunctional solution in intensive care of endogenous intoxication in patients with acute peritonitis. Scientific and Practical Journal TIPPMK. 2011; 2: 77-79.

Aliev N.A., Bobiev A.B., Khamidov D.B., Barotov E.D., Buriev T.N., Kurbanov D.A. et al. Rheosorbilact and Latren in the correction of endogenous intoxication and oxidative stress in patients with acute destructive pancreatitis. Emergency Medicine. 2015; 64 (1): 57-59.

Pronichev V., Styazhkina S., Mikhailov A. Efficiency of treatment with Rheosorbilact in patients with diabetic foot syndrome. Health, Demography, Ecology of the Finno-Ugric Peoples. 2016; 2: 30-32.

Ryzhko O.O. Rheosorbilact infusion therapy. Ukr. Pulmonology Journal. 2002; 1: 94-96.

Semler M.W., Wheeler A.P., Thompson B.T. et al. Impact of initial central venous pressure on outcomes of conservative versus liberal fluid management in acute respiratory distress syndrome. Crit. Care Med. 2016; 44 (4): 782-789.

Demirel B. Lactate levels and pneumonia severity index are good predictors of in-hospital mortality in pneumonia. Clin. Respir. J. 2018 Mar; 12 (3): 991-995.

How to Cite
Feshchenko, Y., Beridze, S., Thi Hoa, D., Molodtsov, V., Gumeniuk, M., Gogoreliani, N., Sattarov, H., Emukhvari, N., Lupu, G., Mostovoi, Y., Kuryk, L., & Thi Thu Anh, N. (2021). The first data on international multicenter clinical study RheoSTAT-CP0698 on the efficacy and safety of Rheosorbilact® infusion in therapy of pneumonia. Infusion & Chemotherapy, (1), 5-14.

Author Biographies

Y.I. Feshchenko, National Institute of Phthisiology and Pulmonology named after F.G. Yanovsky of the NAMS of Ukraine, Kyiv, Ukraine

Yurii I. Feshchenko
Academician of NAMS of Ukraine,
MD, professor.
03038, Ukraine, Kyiv, 10, M. Amosova str.

V.Y. Molodtsov, City Hospital № 1, Mykolaiv, Ukraine

medical director, 2nd Street Ekipazhna, 4, Nikolaev, Ukraine, 54000

M.I. Gumeniuk, National Institute of Phthisiology and Pulmonology named after F.G. Yanovsky of the NAMS of Ukraine, Kyiv, Ukraine

Gumeniuk Mykola Ivanovych
Leading Researcher, Department of Technologies of Treatment of Nonspecific Lung Diseases
MD, professor.
10, M. Amosova st., Kyiv, 03038, Ukraine.

Y.M. Mostovoi, Vinnytsia National Medical University named after M. I. Pyrogov / City Clinical Hospital № 1, Vinnytsia, Ukraine

Yurii M. Mostovoy
Chief of internal diseases propaedeutics chair
MD, professor
28/59, 600-richia, Vinnytsia, 21021, Ukraine

L.M. Kuryk, National Institute of Phthisiology and Pulmonology named after F.G. Yanovsky of the NAMS of Ukraine, Kyiv, Ukraine

Lesia M. Kuryk
Senior scientific worker pulmonology department
10, M. Amosova st., Kyiv, 03038, Ukraine.